Casting Simulation for Diesel Engine Flywheel by using Computer Aided Design and Manufacturing

Murali Krishna Yantrapati

Assistant Professor, Department of Mechanical Engineering, Geethanjali Institute of Science & Technology, Nellore, Andhra Pradesh, India.

Venkatesh INellore

Assistant Professor, Department of Mechanical Engineering, Geethanjali Institute of Science & Technology, Nellore, Andhra Pradesh, India.

Mahendra Babu Mekala

Associate Professor, Department of Mechanical Engineering, Geethanjali Institute of Science & Technology, Nellore, Andhra Pradesh, India

Abstract – Casting is one of the old procedures done on metals. Many products are formed using this method. The casting process like sand casting process which are the oldest casting process since 1950. The texture of the product depends upon the sand used for casting. The final product should be smooth at the end. Usually iron, steel, brass, aluminium, magnesium alloys are used to manufacture the flywheel. In this project, the S-Glass composite material is used to cast the Diesel Engine Flywheel. In this project, includes the CAD technologies combined with process simulation tools are increasingly used to optimize the filling and solidification of cast parts. This project describes the newly developed simulation of flywheel component via casting route. Results of the casting trails showed a high level of confidence in the simulation CAD and CAM tools.

Index Terms – Casting Simulation, flywheel, Shrinkage, Solidification.

1. CHAPTER I

Casting is one of four types: sand casting, permanent mold casting, plaster casting and Die casting. All these types of castings have their own advantages and disadvantages. Depending on the properties of the product requited, one of the casting is selected.

Sand Casting: Sand casting is the oldest casting of the above. This method of casting is in use since 1950.The texture of the product depends on the sand used for casting. The end product is given smooth finishing at the end. Usually iron, steel, bronze, brass, aluminium, magnesium alloys which often include lead, tin, and zinc are used.

Permanent mold casting: Permanent mold casting uses two pieces of mold. This molds are joined together and molten• metal is pored into this mold. The hot metal is allowed to cool and the mold pieces are separated. Some products have metal extrusion which are removed by flash grind or by hand. Tin, lead and Zinc are commonly moulded using this method.

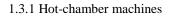
1.1 DIE CASTING

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity, which is machined into two hardened tool steel dies. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter and tin based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small to medium sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency.

1.2 CAST METALS

The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, ferrous die casting is possible. Specific dies casting alloys include: ZAMAK; zinc aluminium; aluminium to, e.g. The Aluminum Association (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium. The following is a summary of the advantages of each alloy:


Zinc: the easiest alloy to cast; high ductility; high impact strength; easily plated; economical for small parts; promotes long die life.

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 10, October (2017) www.ijeter.everscience.org

- Aluminium: lightweight; high dimensional stability for complex shapes and thin walls; good corrosion resistance; good mechanical properties; high thermal and electrical conductivity; retains strength at high temperatures.
- Magnesium: the easiest alloy to machine; excellent strength-to-weight ratio; lightest alloy commonly die cast.
- Copper: high hardness; high corrosion resistance; highest mechanical properties of alloys die cast; excellent wear resistance; excellent dimensional stability; strength approaching that of steel parts.
- Lead and tin: high density; extremely close dimensional accuracy; used for special forms of corrosion resistance. Such alloys are not used in foodservice applications for public health reasons.

1.3 EQUIPMENT

There are two basic types of die casting machines: *hot-chamber machines* and *cold-chamber machines*. These are rated by how much clamping force they can apply. Typical ratings are between 400 and 4,000 st (2,500 and 25,000 kg).

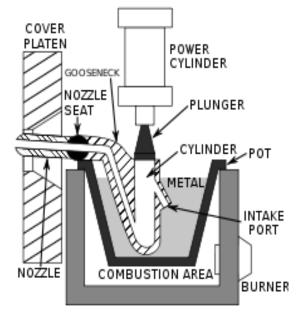


Fig:1 Schematic of a hot-chamber machine

Hot-chamber machines, also known as *gooseneck machines*, rely upon a pool of molten metal to feed the die. At the beginning of the cycle the piston of the machine is retracted, which allows the molten metal to fill the "gooseneck". The pneumatic or hydraulic powered piston then forces this metal out of the gooseneck into the die. 1.3.2 Cold-chamber machines

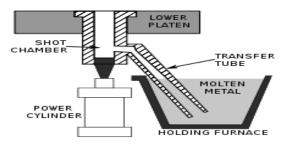


Fig:2 Cold-chamber die casting machine.

1.4 DIES

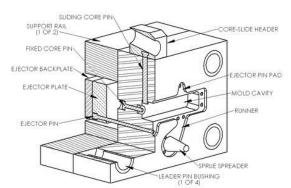


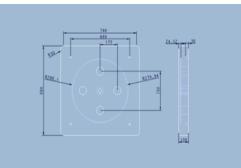
Fig: 3 The ejector die half



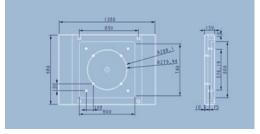
Fig:4 The cover die half

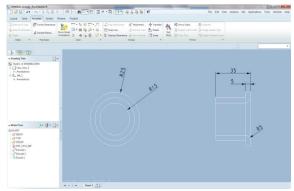
Two dies are used in die casting; one is called the "cover die half" and the other the "ejector die half". Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hotchamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mold cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mold cavity is cut into two *cavity* *inserts*, which are separate pieces that can be replaced relatively easily and bolt into the die halves.

Die and component material and hardness for various cast metals								
	Cast metal							
Die componen	Tin, lead & zinc		<u>Alumini</u> magnes		Copper & brass			
	Material	Hardness	Material	Hardness	Material	Hardness		
	P20 ^[note 1]	290-330 HB	H13	42-48 HRC	DIN 1.2367	38-44 HRC		
Cavity inserts	H11	46-50 HRC	H11	42-48 HRC	H20, H21, H22	44-48 HRC		
	H13	46-50 HRC						
Cores	H13	46-52 HRC	H13	44-48 HRC	DIN 1.2367	40-46 HRC		
Cores			DIN 1.2367	42-48 HRC				
Core pins	H13	48-52 HRC	DIN 1.2367 prehard	37-40 HRC	DIN 1.2367 prehard	37-40 HRC		
Sprue parts	H13	48-52 HRC	H13 DIN 1.2367	46-48 HRC 44-46 HRC	DIN 1.2367	42-46 HRC		
Nozzle	420	40-44 HRC	H13	42-48 HRC	DIN 1.2367 H13	40-44 HRC 42-48 HRC		
Ejectorpins	H13	46-50 HRC	H13	46-50 HRC	H13	46-50 HRC		
Plunger shot sleeve	H13	46-50 HRC	H13 DIN 1.2367	42-48 HRC 42-48 HRC	DIN 1.2367 H13	42-46 HRC 42-46 HRC		
Holder block	4140 prehard	~300 HB	4140 prehard	~300 HB	4140 prehard	~300 HB		


Table1 Die and Component material and hardness for various cast metals

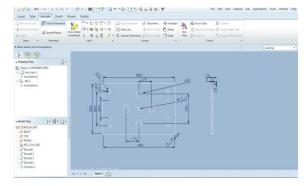
2. CHAPTER II

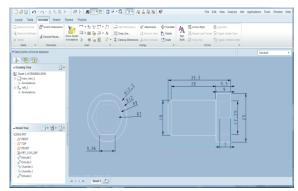

MODELLING USING PRO-E


2D DRAWINGS

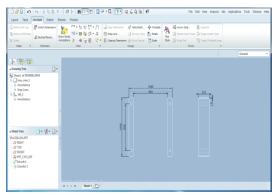
2.1 CORE

2.2 CAVITY

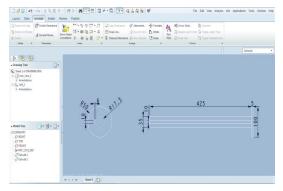


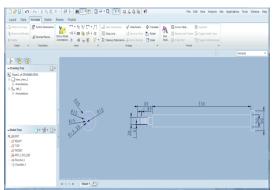

2.4 EJECTOR PIN

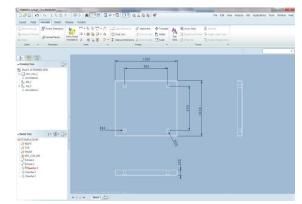
Layout Table	Annotate Sketch											
⁷ % Person Al Joge ⁶ % Person Al Denis X Conto Dates ▼	All Switch Diversions All Decimal Places . Permans	Trow Hodel Acceptions	************************************	7•71 #•4 E 07•	All Algo Dimensions El Domp Line . 2 Diserve Dimensions	⊈ Atachert. (E torr to Ven ∄-torr Scent. Anap	+ Translate Potote Scale	Hanar Byle. Anar Byle. Terrer Last Forme Terrer Test Forme	R Handski Prozei Levier Strage Colore			
											Seneral	
10 6 0												
Drawing Tree Short 1 of DRW0000	9											
B Antidos B Antidos B A Mil			R50 R31_5	C				425		- 100 - Ho		
• Model Tree	. · ·											
CECTORPLANT C roar C TOP C mon Went_cos.por p ² Etrude 1 p ² Etrude 2		į										
			- Sheet	H. 20								


2.5 EJECTOR PLATE

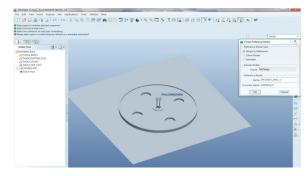
2.6 SCREW

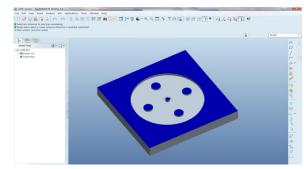

2.7 SPACER BLOCK


2.8 EJECTOR BACK PLATE


2.9 LOCK PIN

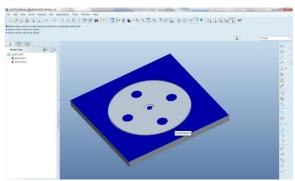
2.10 PILLER


2.11 BOTTOM PLATE

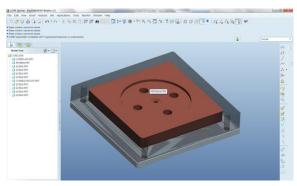

2.12 TOTAL DIE ASSEMBLY

	9	SPACER_BLOCK	I
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	8	SCREW	8
(4)	1	PILLER	Ļ
	6	EJECTORPLATEASM	I.
(2)(3)(5)(8)	5	COREPLATE	I.
	4	COREBACKPLATE	I.
	3	CORE_INSERT	I.
	2	(#VITY	I.
	I.	BOTTOMPLATE	I.
	\$.NO.	PART NAME	QTY

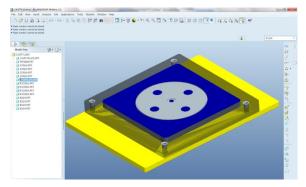
2.13 CORE CAVITY PREPARATION OF MODEL

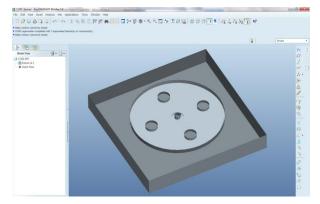


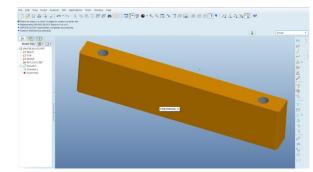
2.14 CORE

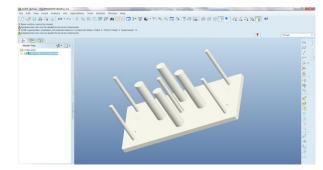


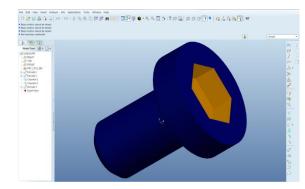
©EverScience Publications

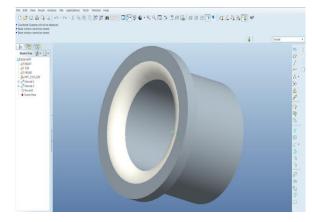

2.15 CAVITY

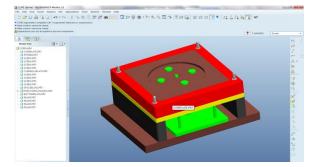

2.16 CORE AND BACK PALTE ASSEMBLY


2.17 CAVITY AND TOP PLATE ASSEMBLY

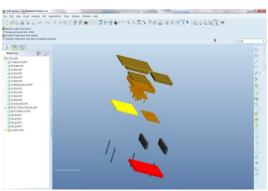

2.18 INSERT


2.19 SPACER BLOCK


2.20 EJECTOR PLATE AND PINS



2.21 SCREW


2.22 BUSH

2.23 CORE & CAVITY PARTIAL ASSEMBLY

2.24 EXPLODED VIEW

3. CHAPTER III

3.1 COMPUTER AIDED MANUFACTURING

Since the age of the Industrial Revolution, the manufacturing process has undergone many dramatic changes. One of the most dramatic of these changes is the introduction of Computer Aided Manufacturing (CAM), a system of using computer technology to assist the manufacturing process.

Through the use of CAM, a factory can become highly automated, through systems such as real-time control and robotics. A CAM system usually seeks to control the production process through varying degrees of automation. Because each of the many manufacturing processes in a CAM system is computer controlled, a high degree of precision can be achieved that is not possible with a human interface.

The CAM system, for example, sets the toolpath and executes precision machine operations based on the imported design. Some CAM systems bring in additional automation by also keeping track of materials and automating the ordering process, as well as tasks such as tool replacement.

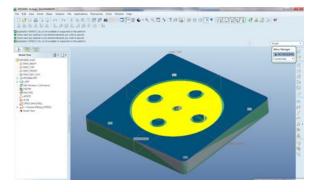
Computer Aided Manufacturing is commonly linked to Computer Aided Design (CAD) systems. The resulting integrated CAD/CAM system then takes the computergenerated design, and feeds it directly into the manufacturing system; the design is then converted into multiple computercontrolled processes, such as drilling or turning.

Another advantage of Computer Aided Manufacturing is that it can be used to facilitate mass customization: the process of creating small batches of products that are custom designed to suit each particular client. Without CAM, and the CAD process that precedes it, customization would be a time-consuming, manual and costly process. However, CAD software allows for easy customization and rapid design changes: the automatic controls of the CAM system make it possible to adjust the machinery automatically for each different order.

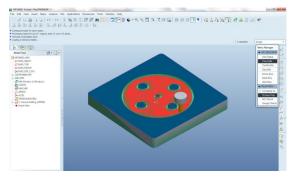
3.2 PROCEDURE OF MANUFACTURING


3.2.1 CAVITY

3.2.1 ROUGHING


ROUGHING WITHOUT WORK PIECE

CUTTING TOOL


VERICUT

	NUMER WIDIN 3.0	and the second		The Party number of Concession, name	Contraction of the local division of the loc	M.H.C	-
		ons Resources Tools Window Help					
060000	3 10 · CV · X 90 1	N 🗈 🕅 💱 🖬 💷 🛛 🔽 🎦	资金•氟氟国合式:		71日 21日 🔮 あ 三日	A?	
nes will not be deployed.							
standares will be deployed	et.						
ALCORES STREETS BUILT	ayet.				1 selected	Smat	
				100 C			
Model Tree	11 - 日 -						A D D D D D D D D D
AFCODELASM							
CT NC_ASM_TOP							1
ANC, ASM, FRONT				100			
PRTICOL PRT							1
I2541 PRT Icent Here							19
							1
	1						ź
							1
							j.
							2
							1
							1

ROUGHING WITH WORKPIECE

PLAYPATH

4.	CHAPTER IV	

4.1 2 ROUGHING PROGRAM

%
G71
O0001
(D:\nsr\roughing.ncl.1)
N0010T1M06
S5000M03
G00X5.Y-5.
G43Z0.H01
G01Z-5.F200.
X201.177
Y-9.914
X5.
Y-14.828
X201.177
Y-19.742
X5.
Y-24.656

X201.177 Y-29.57 X5. Y-34.484 X201.177 Y-39.398 X5. Y-44.313 X201.177 Y-49.227 X5. Y-54.141 X201.177 Y-59.055 X5. X5. Y-73.797 X201.177 Y-78.711 X5. Y-83.625 X201.177 Y-88.539

Y-63.969 X201.177 Y-68.883

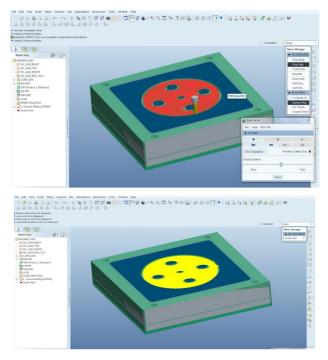
X5. Y-93.453 X201.177

> Y-98.367 X5.

Y-103.281 X201.177

Y-108.195

X5.


V 110 100	0011000 (05
Y-113.109	G01X83.625
X201.177	X84.365Y-189.6
Y-118.023	G03X86.133Y-183.053I-11.24J6.547
X5.	G02X86.133Y-183.053I-13.008J0.
Y-122.938	G01Z0.
X201.177	G00X59.106
Y-127.852	Z-46.998
X5.	G01Z-51.006
Y-132.766	G03X64.097Y-193.778I14.019J0.
X201.177	G02X65.291Y-195.254I-3.22J-3.826
Y-137.68	X67.129Y-195.725I301J-4.991
X5.	G03X71.246Y-169.16I5.996J12.672
Y-142.594	G02X68.64Y-168.815I67J4.955
X201.177	G01X68.302Y-168.651
Y-147.508	X68.176Y-168.91
X5.	X67.875Y-169.383
Y-152.422	X67.524Y-169.82
X201.177	G02X66.26Y-170.83I-3.712J3.35
Y-157.336	G03X62.68Y-192.404I6.865J-12.223
X5.	G01Z-55.01
Y-162.25	X64.083
X201.177	G02X60.986Y-187.729I9.042J9.351
Y-167.164	G01X59.908
X5.	G02X59.106Y-183.053I13.217J4.676
Y-172.078	G01X60.117
X201.177	G02X60.986Y-178.377I13.008J0.
Y-176.992	G01X59.908
X5.	G02X62.68Y-173.701I13.217J-4.676
G01X85.164	G01X64.083
G02X86.131Y-182.865I-12.039J-4.926	G02X82.167Y-173.701I9.042J-9.352
G01X87.142	G01X83.569
X87.144Y-183.053	G02X86.341Y-178.377I-10.444J-9.352
G02X86.385Y-187.603I-14.019J0.	G01X85.263
G01X85.311	G02X86.133Y-183.053I-12.138J-4.676
G02X82.231Y-192.342I-12.186J4.55	G01X87.144

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 10, October (2017) www.ijete

www.ijeter.everscience.org

G02X86.341Y-187.729I-14.019J0. G01X85.263 G02X82.167Y-192.404I-12.138J4.676 G01X83.569 X84.314Y-189.687 G03X86.133Y-183.053I-11.189J6.634 G02X86.133Y-183.053I-13.008J0. G01Z0. G01Z0. G00X87.144 Z-49.007 G01Z-55.01 G03X87.144Y-183.053I-14.019J0. G01Z0. M30 %

4.2 FINISHING

4.2.1 PROGRAMME ON FINISHING

%

G71

O0002

(D:\nsr\finishing.ncl.1) N0010T1M06 S5000M03 G00X111.284Y-139.322 G43Z0.H01 G01X111.522Y-140.847Z-1.753F200. X112.214Y-142.226Z-2.34 X113.293Y-143.329Z-2.684 X114.657Y-144.05Z-2.874 X116.176Y-144.321Z-2.94 X116.284Y-144.322 G03X116.284Y-144.322I0.J5. G02X119.694Y-146.003I0.J-4.3 G01X119.822Y-146.169 G03X123.348Y-146.4I1.865J1.433 X116.284Y-149.322I-7.064J7.078 G02X119.896Y-151.289I0.J-4.3 G01X120.022Y-151.484 G03X123.665Y-152.381I2.297J1.484 X116.284Y-154.322I-7.381J13.059 G02X119.982Y-156.427I0.J-4.3 G01X120.01Y-156.475 G03X123.966Y-157.788I2.735J1.623 X116.284Y-159.322I-7.682J18.466 G02X120.008Y-161.472I0.J-4.3 G01X120.143Y-161.706 G03X123.861Y-163.147I2.754J1.59 X116.284Y-164.322I-7.577J23.825 G02X120.008Y-166.472I0.J-4.3 G01X120.044Y-166.535 G03X124.226Y-168.252I3.203J1.849 X116.284Y-169.322I-7.942J28.93 G02X120.008Y-171.472I0.J-4.3 G01X120.123Y-171.671 G03X124.157Y-173.425I3.202J1.849

X116.284Y-174.322I-7.873J34.103 G02X120.008Y-176.472I0.J-4.3 G01X120.181Y-176.772 G03X124.107Y-178.55I3.203J1.849 X116.284Y-179.322I-7.823J39.228 G02X120.008Y-181.472I0.J-4.3 G01X120.015Y-181.484 G03X124.526Y-183.561I3.724J2.15 X116.284Y-184.322I-8.242J44.239 G02X120.008Y-186.472I0.J-4.3 G01X120.055Y-186.554 G03X124.484Y-188.645I3.724J2.15 X116.284Y-189.322I-8.2J49.323 G02X120.008Y-191.472I0.J-4.3 G01X120.088Y-191.611 G03X124.45Y-193.713I3.724J2.15 X116.284Y-194.322I-8.166J54.391 G02X120.008Y-196.472I0.J-4.3 G01X120.115Y-196.658 G03X124.422Y-198.768I3.724J2.15 X116.284Y-199.322I-8.138J59.446 G02X120.008Y-201.472I0.J-4.3 G01X120.138Y-201.698 G03X124.399Y-203.814I3.724J2.15 X116.284Y-204.322I-8.115J64.492 G02X120.008Y-206.472I0.J-4.3 G01X120.158Y-206.732 G03X124.379Y-208.853I3.724J2.15 X116.284Y-209.322I-8.095J69.531 G02X120.008Y-211.472I0.J-4.3 G01X120.175Y-211.761 X187.502Y-137.326 X187.822Y-136.58 X188.112Y-136.076 X188.388Y-135.632

X188.799Y-135.078 X189.122Y-134.694 X189.613Y-133.105 X192.448Y-123.673 X195.417Y-113.545 X196.458Y-109.91 X177.525Y-104.837 X172.125Y-124.986 Z-53.028 X194.94Y-111.809 X176.948Y-106.988 Z-86.061 G00X189.952Y-118.572 Z-108.266 G01Z-111.266 X191.807Y-114.08 X192.088Y-113.351 X177.855Y-109.537 X177.651Y-110.855 X177.109Y-115.217 Z0. M30 %

5. CHAPTER V

5.1. CONCLUSION

By adopting the pressurized gating system, the fluid flow was smooth and air was expelled without any entrapment inside the mould cavity. Simulation showed that the molten metal was able to fill the mould within the desired time. Therefore fluid heat distribution was good and no cold shut was observed. In first iteration improper location of ingates led to formation of shrinkage porosities where in the second iteration only two ingates are located at the thicker section of the inner rib of the flywheel, on which risers are located in order to achieve directional solidification. The flywheel is manufactured using pressure die casting process for bulk production.

In this project the manufacturing process of flywheel (i.e)corecavity extraction, total die parts and assembly, CNC program generation for core and cavity is done.

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 10, October (2017) www.ijeter.ev

REFERENCES

- Mohd Rizuan Mohammed Shafiee, "Effects of gating design on the mechanical strength of thin section castings", ELSEVIER: Journal of Materials Processing Technology, Vol-105, Pg. 128-133, 2009.
- [2] T.Nandi, "Optimization of Riser size of Aluminium alloy (LM6) castings by using conventional method and computer simulation technique", International Journal of Scientific & Engineering Research, Vol-2, 2011, ISSN 2229-5518. 2011
- [3] Lee, P.D, Chirazi, A and see, D (2001). Modelling micro porosity in aluminium -silicon alloys: a review. Journal of light metals. Vol.1 Pg 15-30
- [4] Katzarov, I.H (2003). Finite element modelling of the porosity formation in casting. International Journal of Heat and Mass Transfer. Vol 46. Pg. 1545-1552.
- [5] Ravi, Metal Casting: Computer-Aided Design and Analysis, Prentice-Hall India, New Delhi, 2005.
- [6] B. Ravi, R.C. Creese and D. Ramesh, "Design for Casting A New Paradigm to Prevent Potential Problems," Transactions of the AFS, 107, 1999.
- [7] Shamasunder S., —To believe or not to believe results of casting simulation software, I ALUCAST, pp. 62-67, 2012.